Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37506331

RESUMEN

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Toxicología , Animales , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos
2.
Cell Rep Methods ; 3(3): 100432, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056374

RESUMEN

Drug-induced hepatotoxicity is a leading cause of drug withdrawal from the market. High-throughput screening utilizing in vitro liver models is critical for early-stage liver toxicity testing. Traditionally, monolayer human hepatocytes or immortalized liver cell lines (e.g., HepG2, HepaRG) have been used to test compound liver toxicity. However, monolayer-cultured liver cells sometimes lack the metabolic competence to mimic the in vivo condition and are therefore largely appropriate for short-term toxicological testing. They may not, however, be adequate for identifying chronic and recurring liver damage caused by drugs. Recently, several three-dimensional (3D) liver models have been developed. These 3D liver models better recapitulate normal liver function and metabolic capacity. This review describes the current development of 3D liver models that can be used to test drugs/chemicals for their pharmacologic and toxicologic effects, as well as the advantages and limitations of using these 3D liver models for high-throughput screening.


Asunto(s)
Hepatocitos , Hígado , Humanos , Células Cultivadas , Línea Celular , Pruebas de Toxicidad/métodos
3.
Curr Res Toxicol ; 4: 100102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36619290

RESUMEN

A number of chemicals in the environment pose a threat to human health. Recent studies indicate estradiol induces DNA damage through the activation of the estrogen receptor alpha (ERα). Given that many environmental chemical compounds act like hormones once they enter the human body, it is possible that they induce DNA damage in the same way as estradiol, which is of great concern to females with the BRCA1 mutation. In this study, we developed an antibody-based high content method measuring γH2AX, a biomarker for DNA damage, to test a subset of 907 chemical compounds in MCF7 cells. The assay was optimized for a 1536 well plate format and had a satisfactory assay performance with Z-factor of 0.67. From the screening, we identified 128 compounds that induce γH2AX expression in the cells. These compounds were further examined for their γH2AX induction in the presence of an ER inhibitor, tamoxifen. After tamoxifen treatment, four compounds induced less γH2AX expression compared to those without tamoxifen treatment, suggesting these compounds induced γH2AX that is related to ERα activation. These four compounds were chosen for further studies to assess their ERα activating capability and c-MYC induction. Only lestaurtinib, a selective tyrosine kinase inhibitor, induced ERα activation, which was confirmed by both ERα beta-lactamase reporter gene assay and molecular docking analysis. Lestaurtinib also increased c-MYC expression, a target gene of ERα signaling, measured by the quantitative PCR method. This data suggests that lestaurtinib acts as a DNA damage inducer that is related to ERα activation.

4.
Sci Adv ; 8(48): eadd4150, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36449624

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor α (ERα). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ERα lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ERα and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ERα interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Cricetinae , Humanos , Receptores de Estrógenos , Receptor alfa de Estrógeno , SARS-CoV-2
5.
bioRxiv ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35665018

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 (ACE2) at the cell surface, which constitutes the primary mechanism driving SARS-CoV-2 infection. Molecular interactions between the transduced S and endogenous proteins likely occur post-infection, but such interactions are not well understood. We used an unbiased primary screen to profile the binding of full-length S against >9,000 human proteins and found significant S-host protein interactions, including one between S and human estrogen receptor alpha (ERα). After confirming this interaction in a secondary assay, we used bioinformatics, supercomputing, and experimental assays to identify a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit and an S-ERα binding mode. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects and ACE2 expression. Noninvasive multimodal PET/CT imaging in SARS-CoV-2-infected hamsters using [ 18 F]fluoroestradiol (FES) localized lung pathology with increased ERα lung levels. Postmortem experiments in lung tissues from SARS-CoV-2-infected hamsters and humans confirmed an increase in cytoplasmic ERα expression and its colocalization with S protein in alveolar macrophages. These findings describe the discovery and characterization of a novel S-ERα interaction, imply a role for S as an NRC, and are poised to advance knowledge of SARS-CoV-2 biology, COVID-19 pathology, and mechanisms of sex differences in the pathology of infectious disease.

6.
Arch Toxicol ; 96(7): 1975-1987, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35435491

RESUMEN

Currently, approximately 80,000 chemicals are used in commerce. Most have little-to-no toxicity information. The U.S. Toxicology in the 21st Century (Tox21) program has conducted a battery of in vitro assays using a quantitative high-throughput screening (qHTS) platform to gain toxicity information on environmental chemicals. Due to technical challenges, standard methods for providing xenobiotic metabolism could not be applied to qHTS assays. To address this limitation, we screened the Tox21 10,000-compound (10K) library, with concentrations ranging from 2.8 nM to 92 µM, using a p53 beta-lactamase reporter gene assay (p53-bla) alone or with rat liver microsomes (RLM) or human liver microsomes (HLM) supplemented with NADPH, to identify compounds that induce p53 signaling after biotransformation. Two hundred and seventy-eight compounds were identified as active under any of these three conditions. Of these 278 compounds, 73 gave more potent responses in the p53-bla assay with RLM, and 2 were more potent in the p53-bla assay with HLM compared with the responses they generated in the p53-bla assay without microsomes. To confirm the role of metabolism in the differential responses, we re-tested these 75 compounds in the absence of NADPH or with heat-attenuated microsomes. Forty-four compounds treated with RLM, but none with HLM, became less potent under these conditions, confirming the role of RLM in metabolic activation. Further evidence of biotransformation was obtained by measuring the half-life of the parent compounds in the presence of microsomes. Together, the data support the use of RLM in qHTS for identifying chemicals requiring biotransformation to induce biological responses.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteína p53 Supresora de Tumor , Activación Metabólica , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Microsomas Hepáticos , NADP , Ratas , Transducción de Señal
7.
Genes Cells ; 27(5): 331-344, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35194903

RESUMEN

Base excision repair (BER) removes damaged bases by generating single-strand breaks (SSBs), gap-filling by DNA polymerase ß (POLß), and resealing SSBs. A base-damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti-cancer base-damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLß to SSBs, but XRCC1-/- cells are much more sensitive to MMS than PARP1-/- cells. We recently report that the PARP1 loss in XRCC1-/- cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1-/- cells also restores their tolerance to the three anti-cancer base-damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1-/- mutation, but not POLß-/- , with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis-dependent and independent mechanisms.


Asunto(s)
Venenos , Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato Ribosa , Alquilantes , ADN , Daño del ADN , Reparación del ADN , Metilmetanosulfonato/farmacología , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Temozolomida/farmacología
8.
Environ Health Perspect ; 129(4): 47008, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33844597

RESUMEN

BACKGROUND: Inhibition of acetylcholinesterase (AChE), a biomarker of organophosphorous and carbamate exposure in environmental and occupational human health, has been commonly used to identify potential safety liabilities. So far, many environmental chemicals, including drug candidates, food additives, and industrial chemicals, have not been thoroughly evaluated for their inhibitory effects on AChE activity. AChE inhibitors can have therapeutic applications (e.g., tacrine and donepezil) or neurotoxic consequences (e.g., insecticides and nerve agents). OBJECTIVES: The objective of the current study was to identify environmental chemicals that inhibit AChE activity using in vitro and in silico models. METHODS: To identify AChE inhibitors rapidly and efficiently, we have screened the Toxicology in the 21st Century (Tox21) 10K compound library in a quantitative high-throughput screening (qHTS) platform by using the homogenous cell-based AChE inhibition assay and enzyme-based AChE inhibition assays (with or without microsomes). AChE inhibitors identified from the primary screening were further tested in monolayer or spheroid formed by SH-SY5Y and neural stem cell models. The inhibition and binding modes of these identified compounds were studied with time-dependent enzyme-based AChE inhibition assay and molecular docking, respectively. RESULTS: A group of known AChE inhibitors, such as donepezil, ambenonium dichloride, and tacrine hydrochloride, as well as many previously unreported AChE inhibitors, such as chelerythrine chloride and cilostazol, were identified in this study. Many of these compounds, such as pyrazophos, phosalone, and triazophos, needed metabolic activation. This study identified both reversible (e.g., donepezil and tacrine) and irreversible inhibitors (e.g., chlorpyrifos and bromophos-ethyl). Molecular docking analyses were performed to explain the relative inhibitory potency of selected compounds. CONCLUSIONS: Our tiered qHTS approach allowed us to generate a robust and reliable data set to evaluate large sets of environmental compounds for their AChE inhibitory activity. https://doi.org/10.1289/EHP6993.


Asunto(s)
Acetilcolinesterasa , Insecticidas , Inhibidores de la Colinesterasa/toxicidad , Humanos , Simulación del Acoplamiento Molecular
9.
DNA Repair (Amst) ; 100: 103056, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33588156

RESUMEN

The replicative polymerase δ (Polδ), consisting of four subunits, plays a pivotal role in chromosomal replication. Pold4, the smallest subunit of Polδ, is believed to contribute to the regulation of replication by facilitating repair in response to DNA damage. However, that contribution has not been fully elucidated. We here show that Pold4 contributes to the suppression of gene conversion in immunoglobulin-variable (IgV) gene diversification in the chicken DT40 lymphocyte cell line, where gene conversion diversifies the IgV gene through intragenic homologous recombination (HR) between diverged pseudo-V segments. IgV gene conversion is initiated by activation-induced cytidine deaminase-mediated uracil formation in the IgV gene, which in turn converts into an abasic site, leading to replication arrest. POLD4-/- cells exhibited an increased rate of IgV gene conversion. Moreover, the gene-conversion tract was lengthened and the usage of pseudo-V segments was altered, showing a preference, to use the diverged sequence as a donor in POLD4-/- cells. These data suggest that Pold4 is involved in the regulation of HR-mediated gene conversion in IgV diversification. By contrast, the rate in HR-mediated, sister-chromatid exchange and gene-targeting induced by an I-SceI endonclease-mediated DNA double-strand break exhibited by POLD4-/- cells was indistinguishable from that by wild-type cells. These findings indicate that the functionality of general HR is preserved in POLD4-/- cells. In conclusion, Pold4 is involved in the suppression of IgV-gene conversion without affecting the general functionality of HR.


Asunto(s)
Pollos/metabolismo , Daño del ADN , Conversión Génica , Recombinación Homóloga , Región Variable de Inmunoglobulina/metabolismo , Animales , Línea Celular , Pollos/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Región Variable de Inmunoglobulina/genética
10.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142951

RESUMEN

In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Células Cultivadas , Hepatocitos/efectos de los fármacos , Humanos , Inactivación Metabólica
11.
Artículo en Inglés | MEDLINE | ID: mdl-32154236

RESUMEN

Assessing skin irritation potential is critical for the safety evaluation of topical drugs and other consumer products such as cosmetics. The use of advanced cellular models, as an alternative to replace animal testing in the safety evaluation for both consumer products and ingredients, is already mandated by law in the European Union (EU) and other countries. However, there has not yet been a large-scale comparison of the effects of topical-use compounds in different cellular skin models. This study assesses the irritation potential of topical-use compounds in different cellular models of the skin that are compatible with high throughput screening (HTS) platforms. A set of 451 topical-use compounds were first tested for cytotoxic effects using two-dimensional (2D) monolayer models of primary neonatal keratinocytes and immortalized human keratinocytes. Forty-six toxic compounds identified from the initial screen with the monolayer culture systems were further tested for skin irritation potential on reconstructed human epidermis (RhE) and full thickness skin (FTS) three-dimensional (3D) tissue model constructs. Skin irritation potential of the compounds was assessed by measuring tissue viability, trans-epithelial electrical resistance (TEER), and secretion of cytokines interleukin 1 alpha (IL-1α) and interleukin 18 (IL-18). Among known irritants, high concentrations of methyl violet and methylrosaniline decreased viability, lowered TEER, and increased IL-1α secretion in both RhE and FTS models, consistent with irritant properties. However, at low concentrations, these two compounds increased IL-18 secretion without affecting levels of secreted IL-1α, and did not reduce tissue viability and TEER, in either RhE or FTS models. This result suggests that at low concentrations, methyl violet and methylrosaniline have an allergic potential without causing irritation. Using both HTS-compatible 2D cellular and 3D tissue skin models, together with irritation relevant activity endpoints, we obtained data to help assess the irritation effects of topical-use compounds and identify potential dermal hazards.

12.
PLoS One ; 14(3): e0213383, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840704

RESUMEN

Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.


Asunto(s)
Daño del ADN , Proteínas Nucleares/metabolismo , Animales , Proteínas Aviares/deficiencia , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos , ADN/biosíntesis , ADN/genética , ADN Polimerasa beta/deficiencia , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN Primasa/deficiencia , ADN Primasa/genética , ADN Primasa/metabolismo , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Técnicas de Inactivación de Genes , Genes de Inmunoglobulinas , Humanos , Enzimas Multifuncionales/deficiencia , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Moldes Genéticos
13.
Proc Natl Acad Sci U S A ; 115(33): 8412-8417, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061412

RESUMEN

Warsaw breakage syndrome, a developmental disorder caused by mutations in the DDX11/ChlR1 helicase, shows cellular features of genome instability similar to Fanconi anemia (FA). Here we report that DDX11-deficient avian DT40 cells exhibit interstrand crosslink (ICL)-induced chromatid breakage, with DDX11 functioning as backup for the FA pathway in regard to ICL repair. Importantly, we establish that DDX11 acts jointly with the 9-1-1 checkpoint clamp and its loader, RAD17, primarily in a postreplicative fashion, to promote homologous recombination repair of bulky lesions, but is not required for intra-S checkpoint activation or efficient fork progression. Notably, we find that DDX11 also promotes diversification of the chicken Ig-variable gene, a process triggered by programmed abasic sites, by facilitating both hypermutation and homeologous recombination-mediated gene conversion. Altogether, our results uncover that DDX11 orchestrates jointly with 9-1-1 and its loader, RAD17, DNA damage tolerance at sites of bulky lesions, and endogenous abasic sites. These functions may explain the essential roles of DDX11 and its similarity with 9-1-1 during development.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , ARN Helicasas DEAD-box/fisiología , ADN Helicasas/fisiología , Reparación del ADN , Replicación del ADN , Animales , Pollos , Anemia de Fanconi/genética , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Hipermutación Somática de Inmunoglobulina
14.
DNA Repair (Amst) ; 68: 50-57, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29935364

RESUMEN

Prolonged replication arrest on damaged templates is a cause of fork collapse, potentially resulting in genome instability. Arrested replication is rescued by translesion DNA synthesis (TLS) and homologous recombination (HR)-mediated template switching. SPARTAN, a ubiquitin-PCNA-interacting regulator, regulates TLS via mechanisms incompletely understood. Here we show that SPARTAN promotes diversification of the chicken DT40 immunoglobulin-variable λ gene by facilitating TLS-mediated hypermutation and template switch-mediated gene-conversion, both induced by replication blocks at abasic sites. SPARTAN-/- and SPARTAN-/-/Polη-/-/Polζ-/- cells showed defective and similar decrease in hypermutation rates, as well as alterations in the mutation spectra, with decreased dG-to-dC transversions and increased dG-to-dA transitions. Strikingly, SPARTAN-/- cells also showed reduced template switch-mediated gene-conversion at the immunoglobulin locus, while being proficient in HR-mediated double strand break repair, and sister chromatid recombination. Notably, SPARTAN's ubiquitin-binding zinc-finger 4 domain, but not the PCNA interacting peptide domain or its DNA-binding domain, was specifically required for the promotion of immunoglobulin gene-conversion, while all these three domains were shown to contribute similarly to TLS. In all, our results suggest that SPARTAN mediates TLS in concert with the Polη-Polζ pathway and that it facilitates HR-mediated template switching at a subset of stalled replication forks, potentially by interacting with unknown ubiquitinated proteins.


Asunto(s)
Pollos/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Región Variable de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina , Animales , Diversidad de Anticuerpos , Proteínas Aviares/metabolismo , Línea Celular Tumoral , Pollos/genética , Pollos/inmunología , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga , Ubiquitina/metabolismo
15.
PLoS One ; 13(2): e0192421, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29408941

RESUMEN

ALC1 (amplified in liver cancer 1), an SNF2 superfamily chromatin-remodeling factor also known as CHD1L (chromodomain helicase/ATPase DNA binding protein 1-like), is implicated in base-excision repair, where PARP (Poly(ADP-ribose) polymerase) mediated Poly(ADP-ribose) signaling facilitates the recruitment of this protein to damage sites. We here demonstrate the critical role played by ALC1 in the regulation of replication-fork progression in cleaved template strands. To analyze the role played by ALC1 as well as its functional relationship with PARP1, we generated ALC1-/-, PARP1-/-, and ALC1-/-/PARP1-/- cells from chicken DT40 cells. We then exposed these cells to camptothecin (CPT), a topoisomerase I poison that generates single-strand breaks and causes the collapse of replication forks. The ALC1-/- and PARP1-/- cells exhibited both higher sensitivity to CPT and an increased number of chromosome aberrations, compared with wild-type cells. Moreover, phenotypes were very similar across all three mutants, indicating that the role played by ALC1 in CPT tolerance is dependent upon the PARP pathway. Remarkably, inactivation of ALC1 resulted in a failure to slow replication-fork progression after CPT exposure, indicating that ALC1 regulates replication-fork progression at DNA-damage sites. We disrupted ATPase activity by inserting the E165Q mutation into the ALC1 gene, and found that the resulting ALC1-/E165Q cells displayed a CPT sensitivity indistinguishable from that of the null-mutant cells. This observation suggests that ALC1 contributes to cellular tolerance to CPT, possibly as a chromatin remodeler. This idea is supported by the fact that CPT exposure induced chromatin relaxation in the vicinity of newly synthesized DNA in wild-type but not in ALC1-/- cells. This implies a previously unappreciated role for ALC1 in DNA replication, in which ALC1 may regulate replication-fork slowing at CPT-induced DNA-damage sites.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/fisiología , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Animales , Camptotecina/farmacología , Línea Celular , Pollos , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/genética , Ubiquitina-Proteína Ligasas
16.
PLoS One ; 12(11): e0188320, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29149203

RESUMEN

ALC1/CHD1L is a member of the SNF2 superfamily of ATPases carrying a macrodomain that binds poly(ADP-ribose). Poly(ADP-ribose) polymerase (PARP) 1 and 2 synthesize poly(ADP-ribose) at DNA-strand cleavage sites, promoting base excision repair (BER). Although depletion of ALC1 causes increased sensitivity to various DNA-damaging agents (H2O2, UV, and phleomycin), the role played by ALC1 in BER has not yet been established. To explore this role, as well as the role of ALC1's ATPase activity in BER, we disrupted the ALC1 gene and inserted the ATPase-dead (E165Q) mutation into the ALC1 gene in chicken DT40 cells, which do not express PARP2. The resulting ALC1-/- and ALC1-/E165Q cells displayed an indistinguishable hypersensitivity to methylmethane sulfonate (MMS), an alkylating agent, and to H2O2, indicating that ATPase plays an essential role in the DNA-damage response. PARP1-/- and ALC1-/-/PARP1-/- cells exhibited a very similar sensitivity to MMS, suggesting that ALC1 and PARP1 collaborate in BER. Following pulse-exposure to H2O2, PARP1-/- and ALC1-/-/PARP1-/- cells showed similarly delayed kinetics in the repair of single-strand breaks, which arise as BER intermediates. To ascertain ALC1's role in BER in mammalian cells, we disrupted the ALC1 gene in human TK6 cells. Following exposure to MMS and to H2O2, the ALC1-/- TK6 cell line showed a delay in single-strand-break repair. We therefore conclude that ALC1 plays a role in BER. Following exposure to H2O2, ALC1-/- cells showed compromised chromatin relaxation. We thus propose that ALC1 is a unique BER factor that functions in a chromatin context, most likely as a chromatin-remodeling enzyme.


Asunto(s)
Linfocitos B/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , ADN Helicasas/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Animales , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Línea Celular Transformada , Línea Celular Tumoral , Pollos , Cromatina/química , ADN Helicasas/deficiencia , Proteínas de Unión al ADN/deficiencia , Regulación de la Expresión Génica , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Metilmetanosulfonato/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal
17.
Oncotarget ; 8(20): 33457-33474, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28380422

RESUMEN

Chemotherapeutic nucleoside analogs, such as Ara-C, 5-Fluorouracil (5-FU) and Trifluridine (FTD), are frequently incorporated into DNA by the replicative DNA polymerases. However, it remains unclear how this incorporation kills cycling cells. There are two possibilities: Nucleoside analog triphosphates inhibit the replicative DNA polymerases, and/or nucleotide analogs mis-incorporated into genomic DNA interfere with the next round of DNA synthesis as replicative DNA polymerases recognize them as template DNA lesions, arresting synthesis. To address the first possibility, we selectively disrupted the proofreading exonuclease activity of DNA polymerase ε (Polε), the leading-strand replicative polymerase in avian DT40 and human TK6 cell lines. To address the second, we disrupted RAD18, a gene involved in translesion DNA synthesis, a mechanism that relieves stalled replication. Strikingly, POLE1exo-/- cells, but not RAD18-/- cells, were hypersensitive to Ara-C, while RAD18-/- cells were hypersensitive to FTD. gH2AX focus formation following a pulse of Ara-C was immediate and did not progress into the next round of replication, while gH2AX focus formation following a pulse of 5-FU and FTD was delayed to the next round of replication. Biochemical studies indicate that human proofreading-deficient Polε-exo- holoenzyme incorporates Ara-CTP, but subsequently extend from this base several times less efficiently than from intact nucleotides. Together our results suggest that Ara-C acts by blocking extension of the nascent DNA strand and is counteracted by the proofreading activity of Polε, while 5-FU and FTD are efficiently incorporated but act as replication fork blocks in the subsequent S phase, which is counteracted by translesion synthesis.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Replicación del ADN , Tolerancia a Medicamentos/genética , Ciclo Celular/genética , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Genotipo , Humanos , Mutación , Ubiquitina-Proteína Ligasas/genética
18.
Chemosphere ; 164: 106-112, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27580264

RESUMEN

Azo dyes, including Sudan I, Orange II and Orange G, are industrial dyes that are assumed to have genotoxic potential. However, neither the type of DNA damage induced nor the structural features responsible for toxicity have been determined. We used a panel of DNA-repair-pathway-deficient mutants generated from chicken DT40 cells to evaluate the ability of these azo dyes to induce DNA damage and to identify the type of DNA damage induced. We compared the structurally related azo dyes Sudan I, Orange II and Orange G to identify the structural features responsible for genotoxicity. Compared with wild type cells, the double-strand break repair defective RAD54-/-/KU70-/- cells were significantly more sensitive to Sudan I, but not to Orange II or Orange G. The quantum-chemical calculations revealed that Sudan I, but not Orange II or Orange G, has a complete planar aromatic ring structure. These suggest that the planar feature of Sudan I is critical to the inducing of double-strand breaks. In summary, we used a DNA-repair mutant panel in combination with quantum-chemical calculations to provide a clue to the chemical structure responsible for genotoxicity.


Asunto(s)
Compuestos Azo/toxicidad , Colorantes/toxicidad , Daño del ADN , Reparación del ADN , Mutágenos/toxicidad , Animales , Compuestos Azo/química , Bencenosulfonatos/química , Bencenosulfonatos/toxicidad , Línea Celular , Pollos , Colorantes/química , Pruebas de Mutagenicidad , Mutágenos/química , Naftoles/química , Naftoles/toxicidad
19.
Chemosphere ; 144: 1901-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26547024

RESUMEN

Benzo[a]pyrene and N-nitrosodimethylamine are major genotoxic compounds present in cigarette smoke, food and oil. To examine the type(s) of DNA damage induced by these compounds, we used a panel of DNA-repair-pathway-deficient mutants generated from chicken DT40 cells and achieved metabolic activation of the test compounds by including rat liver S9 mix. Consistent with expections, benzo[a]pyrene and N-nitrosodimethylamine require metabolicactivation to become genotoxic. The REV3(-/-) mutant cell line exhibited the highest sensitivity, in terms of increased cytotoxicity, to the both compounds after metabolic activation consistent with the known ability of these two compounds to induce DNA adducts. Strikingly, we found that the RAD54(-/-)/KU70(-/-) cell line, a mutant defective in the repair of double-strand breaks, is sensitive to benzo[a]pyrene, suggesting that this compound also induces strand breaks in these cells. In this study we combined a previously employed method, metabolic activation by S9 mix, with the use of a DNA-repair mutant panel, thereby broadening the range of compounds that can be screened for potential genotoxicity.


Asunto(s)
Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Reparación del ADN/efectos de los fármacos , Dimetilnitrosamina/metabolismo , Dimetilnitrosamina/toxicidad , Activación Metabólica/efectos de los fármacos , Animales , Línea Celular , Pollos , Citotoxinas/metabolismo , Citotoxinas/toxicidad , Aductos de ADN/metabolismo , Roturas del ADN/efectos de los fármacos , Daño del ADN , Mutágenos/metabolismo , Mutágenos/toxicidad , Ratas
20.
Radiat Res ; 184(4): 442-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26430822

RESUMEN

Ionizing radiation induces more cell death under normoxic conditions than under hypoxic conditions. This phenomenon, which is known as the oxygen enhancement effect, occurs primarily because ionizing radiation causes more DNA lesions in the presence of oxygen than in its absence. However, the roles these lesions play in terms of cell survival and chromosome damage have not been fully characterized. We exposed a panel of chicken DT40 mutant cells to ionizing radiation to categorize the type of lesion induced and the DNA-repair pathway involved under both normoxic and hypoxic conditions. Among the mutant panel, RAD54(-/-)/KU70(-/-) cells exhibited the greatest radiosensitivity, which was found to be significantly higher under normoxic conditions. This indicates that double-strand breaks (DSBs) were the major cause of cell death and that ionizing radiation induces more DSBs under normoxic condition. Interestingly, the sensitivity of the REV3(-/-) cells increased under hypoxic conditions. Indeed, the REV3(-/-) mutant exhibited a greater number of chromosomal aberrations under hypoxic conditions than under normoxic conditions. These results suggest that the Rev3-mediated translesion-synthesis pathway is more critical for cellular tolerance to ionizing radiation in hypoxic cells than in normoxic cells, and that more chemically modified DNA might be induced under hypoxic conditions. In this study, we identify a previously unappreciated radiation-induced pattern of DNA damage under hypoxic conditions.


Asunto(s)
Hipoxia de la Célula/genética , Daño del ADN , Radiación Ionizante , Animales , Línea Celular , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...